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An investigation of compression and buckling of rods at constant
temperatures and under monotonically increasing axial loads was de~-
scribed in [1]. This article describes the continuation of work con-
cerned with another set of extreme conditions, i.e., a constant load
and temperature monotonically increasing at a certain given rate.
Experimental results are reported and certain possible ways of de-
scribing them by mathematical expressions are discussed.

§1. Using a method described in [1], we carried out a series of
compressive creep tests on material D16T under monotonically in-
creasing loads at constant temperatures ranging from 250 to 400° C
(inclusive) at 25° C intervals. For each test temperature the relation
between stress and total strain at a given loading rate was plotted.

By assuming that total strain € is a sum of instantaneous elastic-
plastic strain & and creep ‘strain P,

e=¢+p, (1.1)

and by taking into account the fact that at T = 275 C creep of the
material in question takesplace withoutstrain-hardening, we estimated
the last term in (L.1) from

dp = Ke® dt. 1.2)
For creep under loads monotonically increasing at a constant load

o=t @3

After substituting into (1.2) and integrating for such starting con-
ditions, we obtain

p=k(®—1)/fc. ) (1.4)

Usually ¢"° 1 ; if this is taken into account and if test results
for each temperature are plotted in log p~ and o™ coordinates, it is
possible to determine K and 8.

In Fig. 1 results of tests at 825" C are plotted in this way; curves
1, 2, and 3relate to data obtained at loading rates ¢, = 0.18, ¢; =
=0.01, and c4 kgf/mmz/sec.

Experimental points lie on lines which are almost straight, though
there is a tendency for their slope (and, consequently, the magnitude
of B) to increase [1]. Reducing loading rate leads to a certain increase
in B. The latter effect is evidently associated with aging phenomena
in alloy D18T: the slower the loading rate, i.e., the longer the time
during which the alloy is held at a given temperature, the more sub-
stantial is the reduction in the alloy strength [2]. As a result, one can
talk only about certain average values K and B for a given temperature
and stress interval. Similar graphs were obtained for other test tempera-
tures.

Values K and B determined by the above described method mono-
tonically increase with rising temperature; their numerical values can
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be satisfactorily approximated with the aid of the Lagrange interpola-
tion polynomial.
Confining ourselves to third-power polynomials, we obtain for K

K = (3488 -107T% — 25.524-10"472 +
+ 62.065 10727 — 50.101) -10°8 sec™!

(1.5)

Analogically for 8
B == 0,506 407675 — 41994 -10°4T2 +
€.6)
+ 12.0916 -10727 — 11,2983 [mm?2/kG],

where T appears in °C,
Thus, (1.12), in the entire temperature interval 250 -400° C,
becomes

dp = K (T)exp|3(T)side. 1.7)

Figure 2 shows graphs o~E plotted for rods tested in compression
at a) 275, b) 325, ¢) 400° C; numbers 1, 2, 3, and 4 ascribed to
experimental points indicate, respectively, results obtained at loading
rates of ¢; = 4.5, ¢; = 0.18, ¢, =0.01, c, = 0.0045 kG/mm” sec.

Theoretical curves obtained from (1.7) and (1.1) are shown as
dashed lines. Similar results were obtained for other test temperatures.
It can be stated in conclusion that creep at constant temperatures is
satisfactorily described by (1.7) in the entire temperature interval
studied.

Validity of (1.7) with functions K = K(T) and B = B(T) of type (1.5)
and (1.6), respectively, was verified on experimental data in creep
of the same material at constant loads and temperatures monotonically
increasing at a constant rate.

The test pieces were prepared from alloy D16T rods in the form of
cylinders 70 mm long with the gauge portion 40 + 0.1 mm long and
7.5 4 0.01 mm diameter. To ensure more uniform heating under non-
steady -state conditions, tube specimens (internal diameter = 4  0.01
mm) were used. At slow heating rates both tube and solid specimens
of equal cross section were used; the test results were identical.

The specimens were heated at linearly increasing rates with the
aid of an "EKVT" type self-recording instrument with a temperature
controlling device. The specimen temperature was controlled by
closing and opening contacts in the furnace heater circuit. The master
switch is connected by a cable to the drum of the self-recorder tape
winder and moves at a constant speed in the direction of increasing
temperature scale. The other contact in the form of flat spring is
attached to the carriage of the self-recorder stylus which records the
specimen temperature. When in the working position, the stylus
carriage with its contact always leads the master switch. The latter,
moving at a constant speed, catches up with the carriage and closes
the heater circuit; as a result, the furnance temperatures rises and
the carriage, following the specimen temperature, moves ahead of the
master switch thereby opening the heater circuit.
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Fig. 3

When the temperature drops, the carriage stops and starts moving
in the opposite direction; the master switch catches up again with
the carriage and the process is repeated. As a result, the specimen
temperature oscillates about the preset values within +3° C with corre~
sponds to +1,0% of the median temperature. The readings of three
chromel-copel thermocouples (contact-welded to the specimen) were
recorded by an "EKVT" type compensating self-recorder.

Tests were carried out at three heating rates: 6 = 1.66° C/sec;

6, =0.52° C/sec. The axial strain of each specimen was recorded
during the tests.

A series of experiments was carried out to determine thermal strains
at different heating rates. It was established that heating rate (in the
range studied) has no effect on the magnitude of thermal strains. At
heating rates faster than 6; = 1.66° G/sec strains were smaller thanthose
measured at the corresponding temperature and slower heating rates,
This effect is evidently attributable to nonuniform heating at fast
heating rates.

As pointed out above, alloy D16T age-hardens at elevated tem-
peratures. All experiments at constant temperatures, from the results
of which (1.5) and (1.6) were determined, were carried out in the
following way: heating to 2 given test temperature, holding the speci~
men at the temperature for 20 min, and programmed loading. To
obtain comparable results and to make it possible tous (1.5) and (1.6),
experiments at increasing temperatures were cairied out in the follow-
ing way: heating to 800° G, holding at the temperature for 30 min,
cooling to room temperature, applying a constant load, and switching
on the programmed heating. Tests at above cited heating rates were
carried out at two constant loads: o, = 8.1 and 0, = 10 kG/mm®.

Results of tests at 6 = 0.52° C/sec and o = 8.1 kgf/mm® are re-
produced in Fig. 3. Cwrve 1 represents the diagram of elastic strains
&) = 6/E(T) which increase due to the fact that the elasticity modulus
decreases with temperature. Curve 2 represents the diagram of thermal
strains €, = aT. Curve 3 represents the variation in the sum g; + &,.

Experimental points which represent the sum of thermal, elastic
and creep strains are shown as black dots. As was to be expected, up
to temperatures of about 200° C the experimental points coincide with
curve 3; this indicates the absence of creep strains. At higher tempera-
tures the experimental points deviate from curve 3 by the magnitude
of the total creep strain. The dashed line (curve 4) represents calcu-
lated creep strains p obtained from (1.7) for the experimental con~
ditions used; calculations were carried out with the aid of the Simpson
formula. It will be seen that the theoretical curve passes through the
zone of experimental points.

For comparison, several tests were catried out with and without
preliminary heating of the specimens to, and holding them for 30
mins at, 300° C. The experimental points for specimens tested with-
out preliminary heating were above the calculated values, whilethose
recorded for previously heated specimens were below, This fact, in-
dicating a marked influence of aging phenomena associated with the
time during which specimens dwell at elevated temperatures, makes
quantitative analysis of creep at variable temperatures rather difficulr,
since it introduces an additional source of error which is bound to be
reflected in increased scattering of experimental points. Bearing this in
mind, it may be concluded that (1.7) makes it possible to describe
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creep at variable temperatures and may be used in theoretical calcula-~
tions.

§2. Buckling tests were carried out on cylindrical specimens 120
mm long and 7 mm diameter. Before testing the specimens were heated
to 300° C and held at the temperature for 20 min. After cooling to
room temperature the specimens were checked for geometrical imper-~
fections. The conditions of hinged support and the method of measur-
ing reflections and critical time were described in [1]; the heating
program was described above.

A large number of experiments at a heating rate of 0.52° G/sec
and stresses 0, = 10 kgf/mm® and oy = 8.1 kgf/mm® were carried out.
Figure 4 shows the results of seven experiments at o; = 8.1 kgf/mm2 in
the form of curves representing deflection dependence on temperature
at a given heating rate; similar curves were obtained at g, = kgf/mm2.

Experimental results were compared with calculated data obtained
from the same criteria used to estimate the critical stress and time for
thin-walled tubes in creep that were analyzed in [1] for the case of
constant temperature and increasing loads.

According to [3] it is assumed that a straight rod will start buckling
after an infinitely small lateral disturbance if the following condition
is satisfied:

o = mE_[A @.1)

here A is flexibility and E is the tangent modulus of "isochronous”
curve o-¢ in which time is the series parameter. In the case under
consideration the role of the series parameter is played by the tem-
perature reached at a certain constant heating rate. It is easy. to show
that this essentially coincides with the method of "isochronous” curves.
Thus, let us consider the o—¢& plame. Let a specimen loaded to a
certain stress 0 at room temperature be heated at a constant rate. The
rise in temperature is accompanied by an increase in strain consisting
of three components: a) elastic strain increasing with temperature due
to a reduction in the elasticity modulus; b) creep strain; ¢) thermal
strain. By having calculated the latter (which is stress-independent),
one can measure the magnitude of the remaining two components at
any given siress level and plot a graph. Having done this for all the
stress levels and joining points relating to the same temperatures, we
obtain a series of "i{sotemperature” curves o-& reproduced in Fig, 5.
Since the heating rate at all the siress levels was the same: dT/dt =

= 0 and T, = 6ty; "isotemperature” curves coincide (accurate to a
certain factor) with "isochronous” curves.
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Thus, the formulation of the stability problem (buckling resistance)
considered in [3] can be applied without any substantia] changes. By
substituting in

1/E,=de/ do

the value & from (1.1), taking into account (1.7), and bearing in
mind that stresses are in the elastic range, we obtain
t
1 1 2
LI SR W SR YC T 2.2)
=Tt aSL\A(T)e dt
[
where E(T) is the temperature-dependent modulus of elasticity. From
(2.2) and (2.1) we obtain an equation from which we find the time and,
consequently, the temperature at which a rod becomes unstable,
t
1 ;
TE =T A KB e (315 Al @.8)

Y]

I}

For o = 8.1 kG/mm” and 6 = 0.52° C/sec we determined (by integra-
tion) the temperature of the loss of stability, T =297 C. This tem-
perature is indicated in Fig. 4 by vertical line S.

If the lateral disturbance is applied for a very short period of time
so that the outer "fibers" of the material are slightly unloaded when
the specimen is deflected, the tangent modulus Er in (2.1) is replaced
by the effective modulus E*. Carrying out the calculations by the
simplified method and replacing the actual specimen cross section by
the ideal H-beam cross section in the estimation of the effective
modulus for the core in a rod specimen which is here in the form

E* == 2E(T) E. [ (E(T) + EJ), @4
we obtain (after substituting in (2.1) and carrying out simple transfor-

mations) an equation
t

G VKB (D exp [3(T) 5] de,  @:9)
)

a2
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from which the temperature corresponding to the moment of the loss
of stability can be calculated. Numerical calculations for the same
conditions give T, = 303° G which is indicated in Fig. 4 by line F.

If we apply a criterion based on the fact that the total strain at
which a rod buckles in creep should be the same as that at which

buckling takes place in the absence of creep [4], we obtain an equa-
tion

€ =€+ p=mt/At. 2.6)
The temperature strains, since they are independent of the force

factors, are not taken into account. Having substituted the expression
for the strains into (2.6), we derive the equation

- s lw . b
TEED —rBA(T)exp[p(T).:]rll @.7

0

from which the temperature corresponding to the moment of the loss of
stability can be determined. Numerical calculation using (2.7) gives
(for the same conditions) T; = 313° C indicated in Fig. 4 by vertical
line G.

It may be concluded on the basis of obtained results that all above
described methods, though producing overestimated values, give a
fairly true picture of the loss in stability of rods in creep at constant
loads and monotonically increasing temperatures. The most accurate
is the tangent-modulus method.
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